BOUT++ simulations of H-mode pedestal of tokamak devices

X. Q. Xu

Lawrence Livermore National Laboratory

E. Davis, B. Dudson, J. Sauppe,P. Snyder, J. Hughes, and Rich Groebner

Presented at

13th International Workshop on Plasma Edge Theory in Fusion Devices
19-21 September,
South Lake Tahoe, California USA

Tokamak edge region encompasses boundary layer between hot core plasma and material walls

- Complex geometry
- Rich physics (plasma, atomic, material)

- Sets key engineering constraints for fusion reactor
- Sets global energy confinement

BOUT (BOUndary Turbulence) was originally developed at LLNL in late 1990s for modeling tokamak edge turbulence*

- Boundary Plasma Turbulence has a different characters than in the core and play an important role in the core confinement
- BOUT is an unique code to simulate boundary plasma turbulence in a complex geometry
 - Observed large velocity shear layer
 - Proximity of open+closed flux surface
 - Presence of X-point
- BOUT/ BOUT++ codes has being applied to DIII-D, C-MOD, NSTX, MAST, ITER scenarios, …

^{*} X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) Xu, Umansky, Dudson & Snyder, CiCP, V. 4, 949-979 (2008).

BOUT++ is a successor to BOUT, developed in collaboration with Univ. York*

Original BOUT, tokamak applications on boundary turbulence and ELMs with encouraging results

BOUT-06: code refactoring using differential operator approach, high order FD, verification

BOUT++: OOP, 2D parallelization, applications to tokamak ELMs and linear plasmas

✓ Gyro-fluid extension

✓ RMPs

✓ Neutrals & impurities

✓ Preconditioner

✓ Massive concurrency

2000 2005 2011

Umansky, Xu, Dudson, et al., Comp. Phys. Comm. V. 180, 887-903 (2008).
 Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467.
 Xu, Dudson, Snyder et al., PRL 105, 175005 (2010).

BOUT and BOUT++ have been products of broad international collaborations

Lodestar Research Corporation

Ifts 浙江大學聚安理論與模擬中心 海宝鶴

Institute for Fusion Theory and Simulation, Zhejiang University

Fusion Simulation Center, Peking University 5

https://bout2011.llnl.gov

The workshop goals:

- to prepare researchers to use and further develop the BOUT++ code for edge turbulence, transport, and ELM simulations of magnetic fusion devices; and
- to promote effective collaboration within the BOUT community and beyond.

There are 45 workshop attendees from five countries: China, PRC (3), Japan (2), Korea, ROK (3), UK (2) and USA (35)

Special lectures on

- •BOUT++ overview, status, code structures
- Solvers and numerical Schemes
- Gyro-fluid extensions

Hands-on examples

- Basic plasma instabilities
- Advanced example on ELM simulations
- •BOUT++ applications to tokamaks & linear machines Lecture notes & hands-on examples are online

BOUT++ Code can be run at high concurrency

- Direct numerical simulation of plasma turbulence
 - Fluid equations based on Braginskii
 equations for N_i, T_e, T_i, V_{||e}, V_{||i}, and σ

Time integration by implicit ODE solver

CVODE and PETSc

Parallel implementation with MPI

 BOUT++ provides an object-oriented framework in C++

– Modular!!!

MPI parallelization allows ideal strong 10°
 scaling to hold up to 10,000 cores!

 Multi-developer version control allows for efficient development P Narayanan et al. Performance Characterization for Fusion Co-design Applications". In: Proceedings of CUG (2011).

C-Mod Equilibrium EDA H-Mode Parameters used as BOUT++ Input (1110201023.00900)

Lundquist Number (S) is a dimensionless ratio of the resistive diffusion time to the Alfvén time

S ~10⁷ in C-Mod EDA pedestal

BOUT++ Calculations Show C-Mod EDA H-Modes Resistively Unstable

BOUT++ calculations show that Diamagnetic Effects Damp Higher Mode Numbers, yielding the growth rate peaks at n=25, consistent with measurements.

Preliminary Nonlinear Simulations have begun --- Mode Saturation and Turbulent Steady-State have been Observed. Comparisons with experimental measurements will begin.

BOUT++ simulations for DIII-D ELMy H-mode shot #131997 at reduced J₁₁

- ✓ Ideal MHD stability boundary is consistent with infinite-n BALLOO code
- ✓ Inclusion of e⁻ inertial eliminates the stability boundary

BOUT++ simulations for one of the latest designs of the ITER 15 MA inductive ELMy H-mode scenario (under the burning condition)

Simulations starting from equilibrium generated by the CORSICA code.

- Marginal unstable pedestal case, T_{ped} =5.5keV, n_{max} =15
- The calculations impact previous ITER ELMy H-mode scenario design as it was based on the pedestal height T_{ped}=4keV

BOUT++ simulations for one of the latest designs of the ITER 15 MA

inductive ELMy H-mode scenario

It is numerical challenge to simulation ITER divertor geometry, requiring high resolutions nx > 1000, ny>100,

even for linear mode.

BOUT++ simulations show radial and poloidal mode structures and for the ITER 15 MA inductive ELMy H-mode scenario

Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity in ELM crashes

The Nonlinear System of Equations for Simulating Non-Ideal MHD Peeling-Ballooning Modes

$$\frac{\partial \overline{\omega}}{\partial t} + v_E \cdot \nabla \overline{\omega} = B_0^2 \nabla_{\parallel} \left(\frac{j_{\parallel}}{B_0} \right) + 2b_0 \times \kappa \cdot \nabla p,$$

$$\frac{\partial \overline{\omega}}{\partial t} + v_E \cdot \nabla P = 0,$$

$$\frac{\partial P}{\partial t} + v_E \cdot \nabla P = 0,$$

$$\frac{\partial A_{\parallel}}{\partial t} = -\nabla_{\parallel} (\phi + \Phi_0) + \frac{\eta}{\mu_0} \nabla_{\perp}^2 A_{\parallel} - \frac{\eta_H}{\mu_0} \nabla_{\perp}^4 A_{\parallel},$$

Non-ideal physics

✓ Using resistive MHD term, resistivity can be renormalized as **Lundquist** Number

$$S = \mu_0 R v_A / \eta$$

✓ Using hyper-resistivity η_H

$$S_{H} = \mu_0 R^3 v_A / \eta_H = S / \alpha_H$$

✓ After gyroviscous cancellation, the diamagnetic drift modifies the vorticity and additional nonlinear terms

✓ Using force balance and assuming no net rotation,

$$E_{r0} = (1/N_i Z_i e) \nabla_{\perp} P_{i0}$$

Equilibrium current and pressure profiles.

Perturbed pressure Contours from Nonlinear P-B modes

512x64x64,

$$S=10^8 \& S_H=10^{12}$$

Pressure fluctuation

$$2\mu_0\delta p/B^2$$

contours-- poloidal

cross section

Pressure Profile from BOUT++ Nonlinear P-B modes

512x64x64,

Pressure profile:

$$2\mu_0 < P > /B^2$$
 $P = P_0 + < \delta p >$

pressure vs. radius and

poloidal angle

Perturbed pressure Contours from nonlinear P-B modes

512x64x64,

 $S=10^5 \& S_H=10^{12}$

Pressure fluctuation

 $2\mu_0\delta P/B^2$

contours-- poloidal

cross section

Pressure Profile from Nonlinear P-B modes

512x64x64,

$$S=10^5 \& S_H=10^{12}$$

Pressure profile:

$$2\mu_0 < P > /B^2$$
 $P = P_0 + < \delta p >$

pressure vs. radius and

poloidal angle

Flux-surface-averaged pressure profile $2\mu_0$ <P>/B² vs S with S_H=10¹² low S -> large ELM size, ELM size is insensitive when S>10⁷

- (1) a sudden collapse: P-B modes -> magnetic reconnection -> bursting process
- (2) a slow backfill as a turbulence transport process

For lower S (10⁶), the reconnection region grows and the pedestal collapse becomes much larger.

Higher order differencing scheme is essential for ELM & turbulence simulations

- The lower order differencing method results in smaller growth rate and much smaller saturate pressure perturbation.
- Lower order method reduces ELM size by more than 50%.

P2-1 T. Xia, X. Xu, B. Dudson, and J. Li, Nonlinear Simulations of Peeling-Ballooning Modes with Flow Shear and RF Sources, Wednesday afternoon